a) $\frac{8}{3}$, $\frac{4}{5}$, $\frac{8}{15}$, $\frac{8}{2}$, $\frac{16}{8}$

b) $\frac{7}{3}$, $\frac{12}{9}$, $\frac{15}{9}$, $\frac{15}{6}$, $\frac{7}{9}$

c) 14/5, 17/10, 27/3, 42/20

Find three possible ways to complete each statement.

a) $\frac{1}{4} < \frac{4}{4} < \frac{6}{8}$

c) $\frac{4}{5} < \frac{8}{1} < \frac{8}{4}$

 $\frac{1}{4} < \frac{\boxed{}}{4} < \frac{9}{8}$

 $\frac{4}{5} < \frac{8}{3} < \frac{8}{4}$

 $\frac{1}{4} < \frac{4}{4} < \frac{9}{8}$

 $\frac{4}{5} < \frac{8}{3} < \frac{8}{4}$

b) $\frac{1}{4} < \frac{}{15} < \frac{7}{15}$

 $\frac{1}{4} < \frac{1}{15} < \frac{7}{1!}$

$$\frac{1}{4} < \frac{1}{15} < \frac{7}{1!}$$

3 Alex and Dora each have two identical cakes.

Alex cuts each of her cakes into 6 equal pieces and gives 10 of her friends a piece each.

Alex

Dora cuts each of her cakes into 12 equal pieces and gives 18 of her friends a piece each.

Who has more cake left?

The greater the numerator, the greater the fraction.

Give at least three examples to show that the statement is not correct.