Brooke Weston Trust Calculation Policy, Lower KS2

Using the Power Maths Calculation Policy as a base, BWT have developed a LKS2 maths policy that recognises the need for a concrete, pictorial and abstract approach to maths. It is aligned with the National Curriculum and ensures consistency in progression through the subject. We encourage teachers to use this document when planning for small steps through the curriculum and delivering practical and well-sequenced lessons in the classroom.

LOWER KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction:

Building up formal calculations that also include exchange.

- Building up the confidence in children to apply their 'number sense' to mental calculations e.g. compensation
- Children focus on choosing the most efficient method when comparing written and mental methods.
- By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division:

- Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem.
- Children develop key skills to support multiplication methods: unitising and commutativity.
- Children develop column methods to support multiplications.
- Children will also need to understand the concept of remainder.

Children will develop short division methods to support their fluency of division calculations.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Unitise = Knowing that an object (e.g a cube) can represent a larger number.					
Understanding place value to 1,000	Use equipment to represent numbers to 1,000. Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount. Body partitioning works well at this point too. The children apply an action to a 100, 10 or 1 and use this to represent a part of the number (e.g. jumping for 100s, hands above head for 10 s and stomping for 1 s).	Unitise 1 numbers Use a pla structure	Unitise 100s, 10s and 1s to build 3-digit numbers. Use a place value grid to support the structure of numbers to 1,000 .	and 1 s to build 3 -digit grid to support the ers to 1,000 .	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.
Adding 100s	Use known facts and unitising to add multiples of 100 .	Use know multiples	$\begin{aligned} & \mathrm{n} \mathrm{fac} \\ & \text { of } 100 \end{aligned}$	and unitising to add	Use known facts and unitising to add multiples of 100 . Represent the addition on a number line.

3-digit number +1 s with exchange

Understand that when the 1s sum to 10 or more, this requires an exchange of 10 ones for 1 ten.

Children should explore this using unitised objects or physical apparatus.
Exchange 10 ones for 1 ten where needed. Use a place value grid to support the understanding.

$$
135+7=142
$$

Understand how to bridge by partitioning to the 1 s to make the next 10 .

$135+7=$?
$135+5+2=142$
Ensure that children understand how to add 1s bridging a 100 .
$198+5=?$
$198+2+3=203$

3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition. Use a place value grid to organise thinking and adding of 1 s , then 10 s .		Use the formal column method of addition to represent the equation. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to	Use a formal column method of addition with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

		allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	
3-digit number + 3-digit number, no exchange	Use place value equipment to make a rep be structured in a place value grid. $326+541$ is represented as: Represent the place value grid with equip	ntation of a calculation. This may or may not t to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.
3-digit number +3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation. $\begin{array}{r} H \quad \mathrm{O} \\ \hline 1 \begin{array}{r} 2 \\ \hline \end{array} \\ +27 \\ \hline 27 \\ \hline 43 \\ \hline \square \end{array}$ $\begin{array}{rrr} \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline 1 & 2 & 6 \\ +2 & 1 & 7 \\ \hline 3 & 4 & 3 \\ \hline \end{array}$

	 (8978	$126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?
Compensation Compensation = knowing that numbers that are close to boundaries can move from one addend to the other addend to simplify the equation.	Children need to understand commutativity (see Y2 addition) before they access compensation.	$\begin{aligned} & 17+29 \\ & 17(-1)+29(+1) \\ & 16+30=46 \end{aligned}$

Year 3 Subtraction	Parts of a Subtraction Problem		
Subtracting 100s	Use known facts and unitising to subtract multiples of 100 . $\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$	Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 5-2=3 \\ & 500-200=300 \end{aligned}$	Understand the link with counting back in 100s. $400-200=200$ Use known facts and unitising as efficient and accurate methods. I know that 7-4 = 3. Therefore, I know that $700-400=300$.
3-digit number - 1s, no exchange	Use number bonds to subtract the 1 s . $319-4=?$		Understand the link with counting back using a number line. Use known number bonds to calculate mentally. $476-4=?$

Brooke Weston Trust Calculation Policy

			Model this using the column method for subtraction.
3-digit number - 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment. $210-20=?$ I need to exchange 1 hundred for 10 tens, to help subtract 2 tens. $210-20=190$	$\begin{array}{rrr} H & T & O \\ \hline{ }^{1} & 13 & 5 \\ - & 6 & 0 \\ \hline 1 & 7 & 5 \\ \hline \end{array}$
3-digit number - up to 3-digit number	Use place value equipment to explore the effect of splitting a whole into two parts, and understand the link with taking away.	Represent the calculation on a place value grid.	Use column subtraction to calculate accurately and efficiently.

3-digit number - up to 3-digit number, exchange required	Use equipment to enact the exchange of 1 hundred for 10 tens, and 1 ten for 10 ones.	Model the required exchange on a place value grid. $175-38=?$ I need to subtract 8 ones, so I will exchange a ten for 10 ones.	Use column subtraction to work accurately and efficiently. If the subtraction is a 3 -digit number subtract a 2-digit number, children should understand how the recording relates to the place value, and so how to line up the digits correctly. Children should also understand how to exchange in calculations where there is a zero in the 10 s column.
Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison.	Children use alternative representations to check calculations and choose efficient methods.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	 There are 3 groups of 3 ones. There are 3 groups of 2 tens.	$\begin{aligned} & 60+12=72 \\ & 3 \times 24=72 \end{aligned}$	
Year 3 Division			
Using timestables knowledge to divide	Use knowledge of known times-tables to calculate divisions. 24 divided into groups of 8. There are 3 groups of 8 .	Use knowledge of known times-tables to calculate divisions.	Use knowledge of known times-tables to calculate divisions. I need to work out 24 shared between 6. I know that $6 \times 4=24$ sol know that $24 \div 6=4$.

\begin{tabular}{|c|c|c|}
\hline Using known facts to divide multiples of 10 \& \begin{tabular}{l}
Use place value equipment to understand how to divide by unitising． \\
Make 6 ones divided by 3. \\
Now make 6 tens divided by 3. \\
Divide multiples of 10 by unitising． \\
12 tens shared into 3 equal groups． 4 tens in each group． \\
What is the same？What is different？
\end{tabular} \& \begin{tabular}{l}
Divide multiples of 10 by a single digit using known times－tables．
\[
180 \div 3=?
\] \\
Explain how pattern finding or using known facts can help when solving these types of division equations．
\[
\begin{aligned}
\& 18 \div 3=6 \\
\& 180 \div 3=60
\end{aligned}
\]
\end{tabular} \\
\hline 2－digit number divided by 1－digit number，no remainders \& \begin{tabular}{l}
Children explore dividing 2－digit numbers by using place value equipment．

\square

णा1ा1T1

サ1111T

$48 \div 2=?$

First divide the 10s．

Then divide the 1 s ．
\end{tabular} \& Children link their practical work to the bus stop method：

$$
4 \longdiv { 1 4 } \begin{array} { r }
{ 1 4 } \\
{ 5 ^ { 1 6 } }
\end{array}
$$

\hline
\end{tabular}

2-digit number divided by 1-digit number, with remainders	Use place value equipment to understand the concept of remainder in division. $29 \div 2=$? \square $29 \div 2=14 \text { remainder } 1$ Link this back to equal grouping as has been mentioned previously Y3 division.		Children link their practical work to the bus stop method: $\begin{aligned} & 15 r^{2} \\ & 3 \longdiv { 4 ^ { 1 } 7 } \end{aligned}$
		Year 4	
	Concrete	Pictorial	Abstract
Year 4 Addition	Addition:		
Understanding numbers to 10,000	Use place value equipment to understand the place value of 4 -digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds. Body partitioning works well at this point too. The children apply an action to a 1,000, 100,10 or 1 and use this to represent a part of the number (e.g. jumping for 100s, hands above head for 10 s and stomping for 1 s).	Represent numbers using place value counters once children understand the relationship between 1,000 s and 100 s . $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$

Which columns will total 10 or more?

	What number will be left if we take away 300？		When exploring the abstract，use colour coding to make explicit the digit that is being manipulated．
Column subtraction with exchange	Understand why exchange of a 1,000 for 100 s ，a 100 for 10 s ，or a 10 for 1 s may be necessary． \rightarrow 閶昍照	Represent place value equipment on a place value grid to subtract，including exchanges where needed．$1250-420=?$Th H T O $=$ 0 ®®®® Th H T O $0 \odot O Q$ $\odot \odot O Q Q$ 00	Use column subtraction，with understanding of the place value of any exchange required．

Column subtraction with exchange across more than one column	Understand why two exchanges may be necessary． $2,502-243=?$ I need to exchange a 10 for some 1 s ，but there are not any 10s here． \square \rightarrow 晶晶晶	Make exchanges across more than one column where there is a zero as a place holder． $2,502-243=?$	Make exchanges across more than one column where there is a zero as a place holder．$2,502-243=?$Th H T 0 2 48^{\prime} 0 2 - 2 4 3 $\begin{array}{rrrr} \text { Th } & H & \text { T } & O \\ \hline 2 & 48 & 9^{\prime} \varnothing & { }^{\prime} 2 \\ - & 2 & 4 & 3 \\ \hline 2 & 2 & 5 & 9 \\ \hline \end{array}$
Representing subtractions and checking strategies		Use bar models to represent subtractions where a part needs to be calculated． I can work out the total number of Yes votes using 5，762－2，899． Bar models can also represent＇find the difference＇as a subtraction problem．	Use inverse operations to check subtractions． I calculated 1，225－799＝574． I will check by adding the parts． The parts do not add to make 1，225． I must have made a mistake．

		$\begin{array}{ll}\text { Danny } & 899 \\ \underset{\text { Luis }}{ } \underset{1,005}{\longleftrightarrow}\end{array}$	
Use a 'Same Difference' mental strategy	Children explore with multilink cubes how you can add on (or subtract) the same amount from the minuend and subtrahend and the difference will remain the same. For example, $13-8=5$ Can be simplified by adding 2 onto the minuend and subtrahend. The difference between the numbers will remain the same. $15-10=5$ Discuss with the children why the second option is easier to calculate and explore alternatives.	Use pictorial representations of the numbers to explore this further. Ensure the children are clear about which numbers have been added on to the minuend and subtrahend.	$\begin{aligned} & 13-8=? \\ & (13+2)-(8+2)=? \\ & 15-10=5 \end{aligned}$ Therefore, $13-8=5$ as the difference is the same.

Year 4 Multiplication Please see attached appendix for MTC guidance and support in strategy. This policy will only look at developing confidence with the formal calculations. Appendix to include: Times tables guidance; example lesson slides and flashcards			
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. $3 \times 4=12$ $3 \times 40=120$ $3 \times 400=1,200$	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understanding times-tables up to 12×12	Understand the special cases of multiplying by 1 and 0 .	Represent the relationship between the $\times 9$ table and the $\times 10$ table.	Understand how times-tables relate to counting patterns.

This is to be used alongside the times table appendices.	$5 \times 1=5$ $5 \times 0=0$	Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ so 1 know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$
Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2. $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition. $4 \times 8=$	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =(10 \times 6)+(8 \times 6) \\ & =60+48 \\ & =108 \end{aligned}$

Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 3×312 using equipment. I can work out how many 1s, 10s and 100s. There are 3×2 ones... 6 ones There are 3×1 ten ... 3 tens There are 3×3 hundreds ... 9 hundreds $6+30+900=936$	Use place value equipment alongside a column method for multiplication of up to 3 -digit numbers by a single digit.	Use the formal column method for up to 3 -digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.
Multiplying more than two numbers Associative Law (commutativity)= Explain to the children that when you multiply more than 2 factors together, the order you multiply them in does not matter.	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\underbrace{5 \times 2}_{10 \times 3} \times 3=30$	Understand that the associative law/comm orders.	ity can be used to multiply in different

	Using the 'Associative Law', explain that the children can decide which order they multiply the factors in. If they preferred to do $\begin{aligned} & 5 \times 3=15 \\ & 15 \times 2=30 \end{aligned}$ This would be acceptable.		
Year 4 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. $28 \div 7=4$	Understand families of related multiplication and division facts. 1 know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$

Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group $8 \div 2=4$ 8 tens divided into 2 equal groups 4 tens in each group $80 \div 2=40$ 8 hundreds divided into 2 equal groups 4 hundreds in each group $800 \div 2=400$	Represent divisions using place value equipment. $9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$
Dividing 2digit and 3digit numbers by a single digit by partitioning into 100s, 10s and 1 s	Partition into 10s and 1s to divide where appropriate. $39 \div 3=?$ $\begin{aligned} & 39=30+9 \\ & 30 \div 3=10 \end{aligned}$	Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten $39=30+9$ $30 \div 3=10$	Partition into 100 s , 10s and 1 s using a partwhole model to divide where appropriate. $146 \div 2=?$ $\begin{gathered} 100 \div 2=50 \\ 40 \div 2=20 \\ 6 \div 2=3 \end{gathered}$

Brooke Weston Trust Calculation Policy

	$\begin{aligned} 9 \div 3 & =3 \\ 39 \div 3 & =13 \end{aligned}$	$\begin{gathered} 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	$\begin{array}{r} 50+20+3=73 \\ 146 \div 2=73 \end{array}$
Dividing 2digit and 3digit numbers by a single digit, using bus stop method			
Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared. \square \square \square \square \square I	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23$ remainder 3

