## Brooke Weston Trust calculation policy, Upper KS2

The following pages show the Power Maths progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

## KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

## Addition and subtraction:

Children build on their column methods to add and subtract numbers with up to seven digits
They adapt methods to calculate efficiently and effectively, ensuring understanding of place value at every stage.
Children compare and contrast methods and decide on the most efficient method to use.

## Multiplication and division

Children develop methods to multiply up to 4-digit numbers by single-digit and 2 -digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000
Written division methods are developed and adapted for division by singledigit and 2-digit numbers and are understood alongside place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.



|  |  $$ <br> Include examples where the numbers of dec | places are different. | Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ \hline 0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline 1 \end{array}$ <br> Include additions where the numbers of decimal places are different. $\begin{aligned} & 3.4+0.65=? \\ & \begin{array}{l} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \\ +0 \cdot 60 \\ \hline \end{array} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Year 5 Subtraction | Subtraction: | nce |  |
| Column subtraction with whole numbers <br> Refer back to the Y4 calculation policy for steps prior to exchanging | Use place value equipment to understand where exchanges are required. $2,250-1,070$    | Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required. $15,735-2,582=13,153$ | Use column subtraction methods with exchange where required. $62,097-18,534=43,563$ |




| Year 5 Multiplication |  |  |  |
| :---: | :---: | :---: | :---: |
| Understandin g square numbers | Use cubes or counters to explore the meaning of 'square numbers'. <br> 25 is a square number because it is made from 5 rows of 5 . <br> Use cubes to explore cube numbers. <br> 8 is a cube number. | Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ <br> 12 is not a square number, because you cannot multiply a whole number by itself to make 12. | Understand the pattern of square numbers in the multiplication tables. <br> Use a multiplication grid to circle each square number. Can children spot a pattern? |
| Understandin g factors and multiples | Retrieve knowledge from Y3 and 4 about arrays. Explore different numbers. Why do some numbers have many factors? Why do | Use the array to identify that 3 and 5 are factors of 15 . | Children to explore pattern finding to understand factor pairs. Identifying that as |


|  | some numbers have only 2 factors? What do you notice? | Children building on their Y3 knowledge of commutativity to identify $3 \times 5$ and $5 \times 3$ <br> Children to manipulate the array to identify other factors ( $1 \times 15$ ). | one factor halves, the other factor doubles is called factorisation. <br> For example: $\begin{aligned} & 1 \times 24=24 \\ & 2 \times 12=24 \\ & 4 \times 6=24 \\ & 8 \times 3=24 \end{aligned}$ <br> Another way children may want to explore this is by using their knowledge of times tables: $\begin{aligned} & 1 \times 24=24 \\ & 2 \times 12=24 \\ & 3 \times 8=24 \\ & 4 \times 6=24 \end{aligned}$ <br> Why would 5 not be a factor of 24 ? <br> Use factor bugs to identify that factors come in pairs (although factors for square numbers are the same!) |
| :---: | :---: | :---: | :---: |
|  |  |  | Factor bugs <br> Factor pairs $\begin{aligned} & 1 \times 18 \\ & 2 \times 9 \\ & 3 \times 6 \end{aligned}$ |
| Multiplying by 10, 100 and 1,000 | Use place value equipment to multiply by 10, 100 and 1,000 by unitising. | Understand the place value effect of multiplication by 10, 100 and 1000 on integers | Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. |

$B W T$ calculation policy

$B W T$ calculation policy

|  |  | Refer to the step above for multiplying multiples of ten, hundreds and thousands |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplying up to 4-digit numbers by a single digit | Explore how to use partitioning to multiply efficiently. $8 \times 17=?$ <br> $8 \times 10=80$ $80+56=136$ <br> So, $8 \times 17=136$ <br> $8 \times 7=56$ | Represe equipme 1s, then | multiplication as repeated , then 100s | ns using place value addition and add the , then $1,000 \mathrm{~s}$. | Use a column multiplication, including any required exchanges. $\begin{array}{r} 136 \\ \times \quad 6 \\ \hline 816 \\ \hline 23 \end{array}$ |
| Multiplying up to 4-digit numbers by 2-digit numbers | Partition one number into 10 s and 1s, then add $23 \times 15=$ ? | dhe pa |  |  | Use column multiplication, ensuring understanding of place value at each stage. |


|  | $23 \times 15=345$ <br> Use your judgement and knowledge of your children to decide if you can do $(20 \times 15)+(3 \times 15)$ as an alternative. |  | $\begin{array}{r} 34 \\ \times \begin{array}{r} 37 \\ \times 238 \\ \hline 24 \times 7 \\ 680 \\ 918 \\ \hline 1 \end{array} 34 \times 27 \end{array}$ <br> For larger factors: <br> Use column multiplication, ensuring understanding of place value at each stage. <br> Progress to include examples that require multiple exchanges as understanding, confidence and fluency build. |
| :---: | :---: | :---: | :---: |
| Multiplying decimals by 10, 100 and 1,000 | Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths. | Represent multiplication by 10 as exchange on a place value grid. | Understand how this exchange is represented on a place value chart. |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Year 5 Division |  |  |  |
| Understandin g factors and prime numbers <br> Composite number $=\mathrm{A}$ number with more than 2 factors (aka not a prime!) | Use equipment to explore the factors of a given number. <br> 8 and 3 are factors of 24 because they divide 24 exactly. | Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ <br> 1 and 13 are the only factors of 13. 13 is a prime number. | Understand how to recognise prime and composite numbers. <br> I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. (encourage the children to draw an array or factor bug if they are still unsure at this point) <br> I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. |


|  | $24 \div 5=4 \text { remainder } 4$ <br> 00000 |  | I know that 1 is not a prime number, as it has only 1 factor. |
| :---: | :---: | :---: | :---: |
|  | 00000 <br> 5 is not a factor of 24 because there is a remainder. |  | 1 2 3 4 5 6 7 8 9 10 <br> (11) 12 13 14 15 16 17 18 19 20 <br> 21 22 23 24 25 26 27 28 29 30 <br> 31 32 33 34 35 36 37 38 39 40 <br> 41 42 43 44 45 46 47 48 49 50 |
| Understandin g inverse operations and the link with multiplication , grouping and sharing | Use equipment to group and share and to explore the calculations that are present. <br> I have 28 counters. <br> I made 7 groups of 4 . There are 28 in total. <br> I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. <br> I have 28 in total. I made groups of 4. There are 7 equal groups. | Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$ | Represent the different multiplicative relationships to solve problems requiring inverse operations. $\begin{aligned} & 12 \div 3=? \\ & 12 \div ?=3 \\ & ? \times 3=12 \\ & 3 \times ?=12 \end{aligned}$ <br> Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$ |
| Dividing whole numbers by 10, 100 and 1,000 | Use place value equipment to support unitising for division. $4,000 \div 1,000$ | Use a place value chart to support dividing by 10, 100 and 1000 | Understand how and why the digits change on a place value grid when dividing by 10 , 100 or 1,000 . |



Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.


|  | 80 cakes divided into trays of 6 . <br> 80 cakes in total. They make 13 groups of 6, with 2 remaining. |  | O Lay out the problem <br> as short division. <br> How many groups of 6 go  <br> into 8 tens?  <br> There is 1 group of 6 tens.  <br> There are 2 tens remaining.  | $3 \longdiv { 4 ^ { 1 } 7 }$ |
| :---: | :---: | :---: | :---: | :---: |
| Dividing decimals by 10, 100 and 1,000 | Refer back to previous step (dividing whole n <br> Understand the movement of digits on a place$0.85 \div 10=0.085$O $\bullet$ Tth Hth Thth <br> 8 $\bullet$ 5   <br> 0 $\bullet$ 0 $\rightarrow$ $8.5 \div 100=0.085$ | mbers by 10, 100, 10 <br> value grid. | 00). This step should just | xtend their conceptual knowledge. |
| Understandin g the relationship between | Use sharing to explore the link between fractions and division. <br> 1 whole shared between 3 people. | Use a bar model and representations to shon fractions and divisio | other fraction how the link between . | Use the link between division and fractions to calculate divisions. |

$B W T$ calculation policy

| fractions and division | Each person receives one-third. | $1 \div 3=\frac{1}{3}$ | $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Year 6 |  |  |  |
|  | Concrete | Pictorial | Abstract |
| Year 6 Addition | Refer back to year 5 for previous steps. It is essential that children are fluent with the Year 5 sections of the policy. |  |  |
| Selecting mental methods for larger numbers where appropriate | Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ <br> This would be 5 more counters in the HTh place. <br> So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$ |  | Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ <br> 195 thousands +6 thousands $=201$ thousands <br> So, $195,000+6,000=201,000$ |
| Understandin g order of operations in calculations | Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5-2=?$ <br> Before you introduce the picture to the children, complete this step with counters. Why are the two outcomes different? | Understand the correct order of operations in calculations by introducing BIDMAS/BODMAS. <br> Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$ |  |




|  |  |  |
| :---: | :---: | :---: |
| Dividing decimals | Use place value equipment to explore division of decimals. <br> 8 tenths divided into 4 groups. 2 tenths in each group. | Use short division to divide decimals with up to 2 decimal places. $\begin{aligned} & 8 \longdiv { 4 \cdot 2 \quad 4 } \\ & 0 \cdot \\ & 8 \longdiv { 4 \cdot { } ^ { 2 } 2 \quad 4 } \\ & 0 \cdot 5 \\ & 8 \longdiv { 4 \cdot { } ^ { 4 } 2 { } ^ { 2 } 4 } \\ & 0 \cdot 5 \quad 3 \\ & 8 \lcm{4 \cdot{ }^{4} 2{ }^{2} 4} \end{aligned}$ |

